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ABSTRACT

The on-off reaction jet control system is often used for attitude and

orbital maneuvering of various spacecraft. Future space vehicles such as the

orbital transfer vehicles, orbital maneuvering vehicles, and space station will

extensively use reaction jets for orbital maneuvering and attitude stabilization.

The proposed robust fuel- and time-optimal control algorithm is used for a

three-mass spring model of flexible spacecraft. A fuel-efficient on-off control

logic is developed for robust rest-to-rest maneuver of a flexible vehicle with

minimum excitation of structural modes.

The first part of this report is concerned with the problem of select-

ing a proper pair of jets for practical trade-offs among the maneuvering time,

fuel consumption, structural mode excitation, and performance robustness. A

time-optimal control problem subject to parameter robustness constraints is

formulated and solved.

The second part of this report deals with obtaining parameter insensi-

tive fuel- and time-optimal control inputs by solving a constrained optimization

problem subject to robustness constraints. It is shown that sensitivity to mod-

eling errors can be significantly reduced by the proposed, robustified open-loop

control approach.

The final part of this report deals with sliding mode control design for

uncertain flexible structures. The benchmark problem of a flexible structure

is used as an example for the feedback sliding mode controller design with

bounded control inputs and robustness to parameter variations is investigated.
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Chapter 1

Introduction

In recent years there has been an interest in deployment of large space

structures in earth's orbit for scientific and commercial a:ctivity. These large

structures are required to be lightweight and are flexible compared to the bulky

rigid structures which were deployed earlier. These flexible structures need ac-

tive control to damp vibrations and to maintain figure. The design of control

systems for such an application using nonlinear control elements like an on-off

thruster is a different problem. One problem is controlling these structures for

rest-to-rest maneuver in minimum time. The_well known standard problem of

bang-bang control has been solved using the minimum principle in [1]. The re-

quirement of time minimization results in bang-bang or pulsed one sided control

which can be implemented using current on-off actuation technology. Another

problem would be to minimize a performance index which weighs time against

fuel consumption for a rest-to-rest maneuver. This is a more difficult problem

for trajectories originating from the same point which satisfy the first order

necessary conditions are not unique. Further, the control system should be ro-

bust to uncertainty in modeling which would occur due to parameter varations.

The total inertia of the flexible structure is well known but there is uncertainty

in the mass distribution and stiffness of the flexible structure. These parameter

variations has been shown to create residual vibration during and/or after ma-

neuver. The problem is of selecting a proper pair of jets for practical trade-offs
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among maneuvering time, fuel consumption, structural mode excitation, and

performance robustness is studied. Open-loop study of robust fuel- and time-

optimal control gives insight into the characterstics of control structures which

optimizes manuevering time and fuel consumption. Such controls would be

desirable in closed-loop control system designed to reduce the effect of distur-

bances and parameter variations. The ultimate goal of the future is to develop

nonlinear feedback control logic for achieving the robust fuel- and time-optimal

performance. Most robust linear feedback controllers do not fully utilize the

available control power in performing a time-optimal maneuver. An attempt

is made to use the sliding mode control technique to obtain a fast settling time

and be robust to parameter variations using bounded control inputs.

The minimum time problem for flexible spacecraft has been addressed

in several technical papers [2,3,4,5]. In [3], the bang-bang control is shown to

have an odd number of switches and to be an odd function of time about the

middle switch. In [3,4,5] statements are made that "in most cases" the time-

optimal control for a rigid body and n bending modes has 2n + 1 switches. In

[6] it is proved that when n = 1, there are never more than three switches for

scalar control. In [7] an optimal open-loop control is obtained for fixed ma-

neuver time where the intermediate switching time is selected to minimize the

post-maneuver energy. In [14,15] near-optimal maneuvers to perform the retar-

getings, which minimize fuel consumption, were also obtained. In minimizing

settling time, it is shown that time-optimal control is sensitive to parameter

variations. The residual vibrations occurs _ a result of parameter variations.

In [10] forcing functions are constructed which attenuate residual vibrations.

In [8] a finite Fourier expansion for the forcing function is used and coefficients

are picked in such a way so as to reduce the peaks of the frequency spectrum

at discrete points. This only eliminates a few of the peaks and leaves some



modes excited. However this is not time-optimal forcing function. In [91 an

appropriately shap_.d torque is derived which not only minimizes residual vi-

brations but also minimizes the effect of parameter variations which change the

modal frequencies. These methods use a smooth continuous forcing functions

having initial and final zero slopes so that the structural modes are not excited.

But our results shove to contrary that the proper sequence of on-off pulse are

required.

The sliding mode control theory has been studied in great detail in

[24]. This nonlinear feedback control is used to achieve accurate tracking in

presence of disturbance and parameter variations. In [22] continuous control

laws are incorporated to approximate the idealized sliding mode control. This

eliminates chattering, the high frequency component of control which occurs

in idealized sliding mode control. However, these schemes do not use bounded

control inputs.

In this th,.sis the primary objective is to study the feasibility of com-

puting open-loop otJ-offpulse controllogicforuncertain spacecraft.The robust

time-optimal controlwhich brings the flexiblespacecr_t from rest-to-restma-

neuver are obtained. The lumped mass springmodel with negligibledamping is

used as a model of a flexiblespacecraft.A constrained parameter optimization

approach is used to solve this problem. The theoreticaland practicalimple-

mentation issuesinherent to constrained optimization are not elaborated. The

bang-bang control _nd one sided control inputs are obtained. The one-sided

control need not be an odd function about mid maneuver time and itbecomes

a difficultproblem Io solvethan the staJadardproblem. Many theoreticalissues

(i.e.uniqueness and structureof time-optimal) needs to be resolved.Itisshown

that an accurate m_thematical modeling isrequired for time-optimal solution



a.nd that they are sensitive to modeling uncertainty. The parameter optimiza-

tion problem is formulated and solved with additional robustness constraints.

Because of properly coordinated pulse sequences the flexible modes are not

significantly excited during maneuver and the residual response after the ma-

neuver are well desensitized. The two one-sided controls show "bang-off-bang"

nature in the time optimal solution. This motivates the problem of computing

the on-off control logic for fuel- and time-optimal control of a flexible spacecraft

which is generally a difficult problem to solve. The mass spring model with

one/two flexible modes are used as examples of flexible spacecraft. The sensi-

tivity to parameter variations is reduced by using robustness constraints. The

feedback control method of sliding mode control design for uncertain flexible

structure for benchmark problem using bounded control inputs is presented.

The robustness to parameter variations is illustrated for this design.

The remainder of this thesis is organized as follows. Chapter 2 deals

with the robust time-optimal control of uncertain spacecraft. In chapter 3,

the robust fuel- and time-optimal control of uncertain flexible spacecraft is

presented. Chapter 4 presents the detailed review of the sliding control theory

and its application to the benchmark problem of flexible spacecraft. Chapter

5 is the conclusion. Appendix A reviews the numerical solution of nonlinear

constrained optimization problem.



Chapter 2

Robust Time-Optimal Control of Uncertain Flexible

Spacecraft

2.1 Introduction

This chapter deals with the problem of computing open-loop, on-off

jet firing logic for flexible spacecraft which are sometimes required to maneuver

as quickly as possible with a minimum of structural vibrations during and/or

after a maneuver. Most standard time-optimal control approaches to such

a problem require an accurate mathematical model, and thus the resulting

solution becomes sensitive to variations in model parameters.

Expanding on the recent results of [11,12], we further explore the

robust time-optimal control problem of flexible spacecraft in the face of mod-

eling uncertainty. In particular, we study the problem of selecting a proper

pair of jets for practical trade-offs among the maneuvering time, fuel consump-

tion, structural mode excitation, and performance robustness. A parameter

optimization approach, with additional constraints for performance robustness

with respect to modeling uncertainty, is employed to solve such a robust time-

optimal control problem. However, many theoretical and practical implemen-

tation issues inherent to constrained parameter optimization problems are not

elaborated in this chapter.

A simple math model of flexible spacecraft with a rigid-body mode

and two flexible modes, as shown in Fig. 2.1, is used to illustrate the concept and



methodology. We consider the case in which the structuralflexibilityand mass

distributionof the vehicleare quite uncertain,while the totalmass (or inertia)

of the vehicle is well known. Consequently, we focus on the robust control

problem of flexiblespacecraft in the face of modal frequency uncertainty as

well as mode shape uncertainty.

u 2 u3

Case#1:lu l_l,u2--O u3=OI

Case #2:0 < u1<+l,.l_ u2_0, u 3=0

Case #3:0 • u I _+I, u2= O, -I< u _ 0

Figure 2.1: Three-mass-spring dynamical system.

Other robustified, open-loop approaches, however, attempt to find a

smooth continuous forcing function (e.g.,a versinefunction)that begins and

ends with zero slope.The basic idea behind such approaches isthat a smooth

control input without sharp transitionsislesslikelytoexcitestructuralmodes

during maneuvers. On the contrary tosuch a common notion,the resultsof this

chapter indicatethat properly modulated, on-off-pulsesequences can achieve a

fastmaneuvering time with a minimum of structuralvibrationsduring and/or



after a maneuver, even in the face of plant modeling uncertainty.

The remainder of this chapter is organized as follows. Section 2.2 de-

scribes the standard time-optimal control problem of flexible spacecraft with-

out modeling uncertainty. A parameter optimization problem is formulated, in

which the objective function is the maneuvering time. Three cases are explored,

as illustrated in Fig. 2.1, in order to assess the actuator placement problem for

time-optimal control of flexible spacecraft with multiple jets. In Section 2.3,

we investigate the same problem as in Section 2.2 but considering the presence

of modeling uncertainty. A time-optimal control problem subject to additional

robustness (or sensitivity) constraints is formulated, and numerical solutions

for three cases are then compared with solutions obtained in Section 2.2.

Time-Optimal Rest-to-Rest Maneuver Control

Problem Formulation

Consider a flexible spacecraft described by

M_ + Kz = Gu (2.1)

where z is a generalized displacement vector, M a mass matrix, K a stiffness

matrix, G the control input distribution matrix, and u the control input vector.

Equation (2.1) is transformed into the modal equations:

_1 + _yl = Cnul + ¢12U2 "1" ¢13U3

"_ ¢22U2 Jr" ¢23U3

(2.2)

20,, + w,,Y,,= ¢,_1ul + ¢,,2u2 + ¢,,3u3

where Yi is the i th modal coordinate, wi the i th modal frequency, ¢ij the modal

input distribution coefficient, and n the number of modes considered in control
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design. Without loss of generality, only three control inputs are considered in

Eq. (2.2).

In this chapter, we consider a simple model which is a generic rep-

resentation of a spacecraft with a rigid-body mode and two flexible modes, as

shown in Fig. 2.1. Three cases are studied: (i) Case 2-1 with both "positive"

and "negative" jets placed at body 1, (ii) Case 2-2 with a "positive" jet at

body 1 and a "negative" jet at body 2, and (iii) Case 2-3 with a "positive" jet

at body 1 and a "negative" jet at body 3. Case 2-1 is a typical case in which

two opposing jets are colocated. In Cases 2-2 and 2-3, two opposing jets are

not colocated.

For a class of problems, such as Case 2-1; the modal equations become

= ¢;u; i = 1,...,n (2.3)

where ¢i the i th modal gain and the scalar control input u is bounded as

- 1 _<u < 1 (2.4)

The problem is to find the control input u(t) which minimizes the performance

index

J= dt = tl

subject to Eqs. (2.3) and (2.4), and given boundary conditions. The time-

optimal bang-bang solution of this problem with the rest-to-rest maneuvering

boundary conditions has, in most cases, (2n - 1) switches, and the solution is

symmetric about the mid-maneuver time tl/2 [12]. That is, for a case with

(2n - 1) switches, we have the symmetric switching pattern given as:

tj = t2,_ - t2,_-i; j = 1,...,n (2.5)



where tj is the jth switching time and t2. -- t/.

A bang-bang input with (2n - 1) switches is expressed as

2n

,.,(t) = _ .Bj,.,,(t- t.,)
j=O

where Bj is the magnitude of a unit step function u.(t) at t:.

can be characterized by its switch pattern as:

(2.6)

This function

B={Bo, B1, B2, ..., B2,}

T={to, tl, t2, ..., t2, }

where B represents a set of Bj with Bo = B2,_ = ±1 and Bj = ±2 for j =

1,-..,2n- 1; T represents a set of switching times(t1,..., t_._l) and the initial

and final times (to = 0 and t! = t2.).

The rest-to-rest maneuvering constraint for the rigid-body mode (wl =

2_

¢--'_(ts - t_)_,e,- y,(t.,) = o
2 _=o

0) can be found as

t >_ t! is

(2.7)

The i th structural mode solution for the control input of Eq. (2.6) for

_bi

_,(*) = -_ _ Bi cos_,(t - t_)
j=O

2n

- -_[_s,,,,(t - t,,) _ ,stco_,(t, - t,,)
- _ j--O

2n

+ sin,o,(t- t.) _ B, sin_,(t, - t.)] (2.8)
jffiO

and it can be shown that the following constraint equation for each mode

:In

y_ B i sinwi(t i - t.) = 0 (2.9)
j=O



l0

is always satisfied for any bang-bang input which is symmetric about the mid-

maneuver time t,,. Consequently, we have the following flexible mode con-

straints for no-residual structural vibration (i.e., y,(t) = 0 for t > t,):

2n

Bi cos_,(ti- t,,) = 0
j=O

for ea_ flexible mode.

(2.1o)

-I

t2 tN. l

U 2 or u 3

tt t3 tN t

U LJ-..U-
AI _3 AN

Figure 2.2: Pulse sequences.

On the other hand, for Case 2-2 with the pulse sequences as illustrated

in Fig. 2.2, the boundary conditions of the rest-to-rest maneuvering problem

result in the following constraint:

N-I N

_,, _ A_-¢,2 _ Ai : 0
i=0,2 i81.3

(2.n)
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where ¢11 and _12 are the modal input distribution coefficients associated with

the rigid-body mode and the two control inputs Ul and u2, and Aj and N are

defined as in Fig. 2.2.

The positioning constraint for the rigid-body mode, with specified

yl(t :> t/), then becomes

N-1

2y,(tl) - ¢n _ [2tjA_i + A_] (2.12)
j=0,2

N

./=1,3

Also, rest-to-rest maneuvering requires that for each flexible mode, yi(t) = 0

for t >_ tl; i.e., we have

N-1 N

-¢il _ cij+¢i2 _ % = 0 (2.13)
j----O,2 j=l,3

N-1 N

Cn _ si,i-¢i2 Y_ sii = 0 (2.14)
1_0,2 "1=_1,3

where

_j

sij

= cos( ,ti) - cos( ,(ti + A,))

= sin(w,tj) - sin(w,(t# + At))

for/ = 2,...,n.

Remark: For cases in which the control inputs are one-sided, each

control input for the time-optimal solution need not be an odd function about

the mid-maneuver time. Thus, the problem with one-sided control inputs be-

comes more difficult to solve than the standard problem with two-sided control

inputs, and many theoretical issues (e.g., the uniqueness and structure of time-

optimal solutions) need to be resolved. We now present a detailed solution of

each case.



2.2.2

12

•_(o)= _(o)= _(o)= o

xz(t/)--x2(tl)= x3(t,f)= 1

_,(o)= _(o)= _3(o)= o

_,(ts)= _2(ts)= _3(t_)= o

bounded as:

-i <_ u(t) < +1

and the equations of motion for this case are

m_1 + kl(zl - z_)

m2_2 + kl(x_ - xl) + k2(z2 - z3)

m3x3 q- k2(x3 -- X2)

where xz, x2 and x3 are the positions of body 1, body 2 and body 3, respec-

tively, and the _inal parameters are ml - m2 = m3 = kz = ks = 1 with

appropriate unit., _nd time is in units of second.

The boundary conditions for a rest.to-rest maneuver are given as

(2.15)

(2.16)

(2.17)

(2.18)

--" U

"- 0

-- 0

where

The modal equations are

_1 = 0.3333u

_2+w_y2 = 0.Su

Ya + w_y3 -- -0.1667u

(2.19)

(2.20)

(2.21)

(2.22)

Case 2-1 with a Two-Sided Control Input

In this case, as illustrated in Fig. 2.1, a two-sided control input is
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_i = f-b+ Jb:-4k, k:c]/2 (2.23)

b = -kl(ml "b m2)m3 -- k2(m: + rrt3)ml (2.24)
/'7/1/7/2/7/3

c = (ml + m_+-_3)/(mlm_m3) (2.2S)

and w2 = 1 rad/sec and _3 = v_ rad/sec for the nominal system. The corre-

sponding boundary conditions for the modal coordinates are

y,(o) = y;(o) = _3(o)= o (2.26)

y,(tt) = 1, y_(tl) = y_(tt) = 0 (2.27)

_(o)= _2(o)= _3(o)= o (2.28)

_(tl)= _2(tl)= _3(tI)= 0 (2.29)

The time-optimal control input with 5 switches is expressed as

u(t) = u.(t) - 2u,(t - t:) + 2u,(t - t2) - 2u,(t - t3)

+ u.(t - t,) - ,,.(t - t,) + u.(t - ts)

with the symmetry conditions

(2.30)

t8 = 2ta

ts = 2t3 - tl

t4 = 2t3 - t2

The time-optimal controlproblem isthen formulated as the following

constrained minimization problem:

rain J = t t = t6 = 2ta (2.31)

subject to the followingconstraints:

$

6-t _,+ _(-1)'+'[2(t,- tj) '1=o
j--I

(2.32)
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2

j=l

2

I+ cos(_,3t3)+ 2_(-i):cos(_a(ta- t:))= 0
j=1

tl, t2, t3>O

(2.33)

(2.34)

(2.35)

A numerical technique of nonlinear constrained optimization problem discussed

in Appendix A, was used to obtain a solution as:

u(t) = u,(t)- 2u,(t- 0.944) + 2u,(t - 2.012)

- 2u,(t - 3.255) + u°(t - 4.499)

- u°(t - 5.567) + u,(t - 6.511) (2.36)

The time responses of 73 to this time-optimal control input are shown in Fig. 2.3

for four different values of k = k I = ks. We notice that the responses are quite

sensitive to variations in the model parameters. Similar responses can also be

observed for arbitrarily combined variations of ki and m,, but keeping the total

mass constant (ml + rn2 + rn 3 -- 3). For convenience, simulation results only

for k = kl = ks variations are presented in this chapter.

2.2.3 Case 2-2 with Two One-Sided Control Inputs

For Case 2-2, as illustrated in Fig. 2.1, two one-sided control inputs

are bounded as

0_< ul _<+1

-1_< us _<0

For this case, the time-optimal control inputs are assumed as:

(2.37)

(2.38)

ul = u,(t) - u,(t- _o)
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tL2

+ _,,(t - t_) - u,(t - t_ - _x_)

= -_,.(t - t,) + ,,.(t - tl -/x,)

- u.(t - t3) + u.(t - ts -/',3)

(2.39)

(2.40)

The modal equations for this case are

_)1 = 0.3333ul + 0.3333u2

Z)2+ w]y2 = 0.5ul

2
Y3 +w3Y3 = 0.1667ul -0.3333u2

(2.41)

(2.42)

(2.43)

and the rest-to-rest maneuver constraints are

Ao -- Al + A2 -- A3 = 0
3

6 + _(-1),[a] + 2tja11= o
,=0
[cos(_2tj)-cos(,,,_(t,+ a_))]= 0

_=o,2
[sin(_,ti) - sin(w2(tj + Aj))] = 0

j = 0,2

2 _ [co,(_t_)- cos(_3(t,+ a,))]
j= 1,3

+ _ [cos(_3t,)- cos(_3(ti+ aj))] = 0
j=0,2

2 _ [sin(w3t_) - sin(ws(t i + A:))]
is1,3

+ _ [sin(w3ti)- sin(_s(tj + Ajll] = 0
j=0,2

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

The time-optimal solution can then be obtained by solving the constrained

minimization problem:

rain J = t! = t3 + A3 (2.50)

subject to the constraint given by Eqs. (2.49).
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A solution of this problemcan be found as

to = 0.0000,

t_ = 1.9581,

t2 = 3.1416,

t3 = 4.504,

t I = 5.349

A0 = 1.0429

A1 = 1.2401

_2 = 1.0429

A3 = 0.8457

(2.51)

The time responses of z3 to the time-optimal control inputs are shown in

Fig. 2.4 for four different values of k = kx = ks. Similar to Case 2-1, the

responses are sensitive to variations in the model parameters. An interesting

feature of this case is that the pulse sequences are of a "bang-off-bang" type, re-

sulting in the control on-time of 4.172 sec, which is different from the maneuver

time of 5.35 sec.

2.2.4 Case 2-3 with Two One-Sided Control Inputs

For Case 2-3, as illustrated in Fig. 2.1, two one-sided control inputs

0_< ul _<+1 (2.52)

-1 < u3 _<0 (2.53)

are bounded as

Similar to Case 2-2, the time-optimal control inputs are assumed as:

u_ = u,(t) - u,(t -/%)

+ u,(t - t2) - u,(t - t_ - A2) (2.54)

us = -u.(t - tl) + _,.(t - t, - 4,)

- u,(t - t3) + u,(t - t3 - A3) (2.55)

The modal equations for this case are

_71 = 0.3333(ux + u3) (2.56)
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_:+_y; = 0.5(ui- u3) (2.57)

y34-w_y3= 0.1667(u_4-ua) (2.55)

and the rest-to-rest maneuver constraints are

Ao -/Xl + A2 - Aa = 0 (2.59)
3

6 + _"_(--1)J[A_ + 2tjA_] = 0 (2.60)
.i=0

3

Z(--1)J[sin(w2tJ) - sin(w2(t i + Aj))] = 0 (2.61)
i=0

3

_-'_(-1)J[cos(w2tj) - cos(_2(t.i 4- A3))] = 0 (2.62)
2:0

3

_"_(-1 )J[sin(w3tj) - sin(wa(tj + A,))] = 0 (2.63)
i=0

3

(-l)J[cos(w3tj)- cos(w3(tj+ aj))] = 0 (2.64)
i=0

h,ts, t3,t4,ts > O; to=0

A# >_0

The time-optimal solution can then be obtained by solving the con-

strained minimization problem:

rain J = t! = t3 + 1"_3

subject to the constraints given by Eqs. (2.64).

A solution of this problem is

to = 0.0000,

t_ = 1.3631,

(s = 2.8329,

t3 = 3.4109,

(! = 4.3619

Ao = 0.9510

A1 = 0.1658

As = 0.1658

A3 = 0.9510

(2.65)

(2.66)

The time responses of z3 to the time-optimal control inputs are shown

in Fig. 2.5 for four different values of k = kl = ks. Again, the responses are
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quite sensitive to variations in the model parameters. Similar to Case 2-2, an

interesting feature of this case is that the pulse sequences are of a "bang-off-

bang" type, resulting in the control on-time of 2.234 sec, which is different from

the maneuver time of 4.362 sec.

Compared to Case 2-1 and Case 2-2, this case has the fastest ma-

neuver time as well as the smallest control on-time. Therefore, the actuator

configuration of Case 2-3 can be considered to be "optimal" in the sense of

minimizing both the maneuver time and the jet on-time.

2.3 Robust Time-Optimal Control

As shown in the preceding section, a standard, time-optimal control

approach requires an accurate mathematical model and thus the resulting so-

lution is often sensitive to plant modeling uncertainty.

In this section, expanding on the approach introduced in Section 2.2,

a parameter optimization problem is formulated with additional constraints for

robustness with respect to the structural frequency uncertainty. The resulting

robustified or desensitized, time-optimal soultion is a multi-switch bang-bang

control, and is thus implementable for Spacecraft equipped with on-off reaction

jets [13].

2.3.1 Problem Formulation

By taking the derivative of Eq. (2.8) with respect to w,, we get
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for eachflexible mode. Letting dy,(t)/dw, = 0 for all t >_ t!, we have

___(t:- )B:cosw,(t,-_)=O; i=2,...,n (2.68)
jffi0

which are called the first-order robustness constraints for the case with a two-

sided control input.

Similarly, the robustness constraints for a case with two one-sided

control inputs can be found as:

N-1 N

-¢,, _ c,,+¢,_ _ c,_ = 0 (2.69)
jffiO,2 jffil,3

N-1 N

_,, _ s,,- _,_ _ s,, = 0 (2.70)
j---0,2 jffil,3

where

s_j= tjsin(w_tj)- (t#+ Aj) sin(w_(t#+ A#))

which are called the first-order robustness constraints for the case with two

one-sided control inputs.

2.3.2 Case 2-1 with a Two-Sided Control Input

For Case 2-1, the time-optimal control is a five-switch bang-bang func-

tion, but the resulting responses were shown to be very sensitive to variations

in model parameters. A robustified, time-optimal solution of the same problem

is now computed as follows. The robust time-optimal control input is assumed

as:
9

_(t) = _.(t) + 2_[(-i)Ju.(t - tj)] +..(_ - qo) (2.n)
j=l
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with the symmetry conditions

t6 = 2ts - t4
tr = 2ts - t3

ts = 2t5 - t=

t9 "- 2ts - tl

rio = 2t5

(2.72)

The constrained optimization problem with the first-order robustness

constraint can be formulated as:

rnin J = tl = rio (2.73)

subjectto

9

6+ Z](-1);+'[2(t,o -t,) 2]-t,_o= 0
3--1

4

1 + cos(a.,2ts) + 2 _':.[(- 1)"/cos(w2(tj - ts))] = 0
1-.=1

4

1+ cos(,,,3t,)+ 2Z][(-ly cos(,,,3(t,- t,))] = 0
j=l

4

tssin(w2ts) + 2 _"_(-1)"(tj -tslsin(w2(tj - ts)) = 0
j--I

4

tssin(w3ts)+ 2 _"_(-l)J(tj-ts) sin(_a(tj- is))= 0
j=1

tl,t2,t3, t4,ts > O; to=O

A robust time-optimal solution with 9 switches can be found as:

tl = 0.560, t2 = 1.460

t3 = 2.690, t4 = 3.804

ts = 5.091, t6 = 6.377

tr = 7.491, ts - 8.722

t9 = 9.622, t20 - 10.18

(2.74)

The time responses of z3 to thisrobust time-optimal controlinput are shown

in Fig. 2.6 for four differentvalues of k = kl "" k2. We notice that the re-

sultingresponses are lesssensitiveto parameter variations,as compared to the
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responses to the ideal, time-optimal control input, as shown in Fig. 2.3. The

second flexible mode is significantly excited during maneuvers, however. Per-

formance robustness has been increased at the expense of the increased maneu-

vering time of 10.18 sec, as compared to the ideal minimum-time of 6.511 sec.

It is, however, emphasized that simply prolonging the maneuver time does not

help to reduce residual structural vibrations caused by modeling uncertainty;

a proper pulse sequence is necessary.

2.3.3 Case 2-2 with Two One-Sided Control Inputs

For Case 2-2, we can represent the control inputs as follows:

ul = u,(t) - _,(t - A0) + _,(t - t2)

- u.(t - t_- _) + ,,.(t - t,) - _,.(t - t, - ,_,)

u2 = -u.(t - q) + u.(t - q -/',1) - ,,.(t - t,)

+ u.(t - t3 - A3) - u.(t- t,) + u.(t - ts - _,)

where we have 11 unknowns to be determined, and t i and A, are defined as in

Fig. 2.2.

The robust time-optimal solution can then be obtained by solving the

constrained parameter optimization problem

subject to

rain J = t t -- ts + As

£Xo- AI + A2 --/% + _4 -- As = 0
5

6 + Y'_J--1)'/[A_ + 2tjA_] = 0
j-_0

[¢os(_2tj)- cos(_2(tj + Ajll] = 0
j=0,2,4

(2.75)
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[sin(,_t_)- _i_(_(_j + _))] = 0
j=0,2,4

2 _ [_o_(,,.,_t,)-_o_(,,.,_(tj+ -%))1
,;=1,3

+ _ [cos(_st,) - cos(,,.,s(t_+ _,))] = 0
j:0,2,4

2 _ [sin(w3tj)- sin(w3(tj + Ai))]
./=1,3

+ _ [sin(w3tj)- sin(w3(ti + _))1 = 0
j=0,2,4

[t_.cos(,,.,2tj) - (tj + ,%) cos(_2(t, + A)))] = 0
j=0,2,4

[t¢ sin(w2t,) -(t, + A._) sin(w2(t, + A,))] = 0
./=0,2,4

2 _ [t_cos(,_t_)- (t_+ _) cos(_(t_ + A_))]

+ _ [t3cos(w3tj)- (tj+ Aj)cos(wa(tj +/x.j))]= 0

j=0,2,4

2 _ [t, sin(wztj)- (tj +/xj) sin(w3(t, +/x.¢))]
j=l,3

+ __, [t_sin(w3t.)) - (tj + A_lsin(w3(t.) + A)))] = 0
j=0,2,4 •

&j>0; j = 0,1,2,3,4,5

tl, t2, t3, t4, tS > 0 ; t0-- 0

A solution to this problem is:

to = 0.0000, Ao = 0.5814

tz = 1.9948, A1 = 0.5657

t2 = 2.8533, A2 = 1.2202

t3 = 4.3234, A3 = 1.4425

t4 = 6.3455, A4 = 0.5814

ts --- 6.9850, As = 0.3747

tI = 7.36

(2.76)

The time responsesof Z3 to the robust time-optimal controlinputsare

shown in Fig.2.7 forfour differentvaluesof k = kl = k2. Similar to Case 2-I of

the preceding section,the robustness has been increased at the expense of the

increased maneuvering time of 7.36 sec, as compared to the ideal minimum-
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time of 5.35 sec. The jet on-time is 4.765 sec. The second flexible mode is less

excited, as compared to Case 2-1.

2.3.4 Case 2-3 with Two One-Sided Control Inputs

Assuming that each control input has two pulses as in Case 2-2, we

can represent the control inputs as:

,,, = ,,.(t) - _,.(t- ,_o)+ _,.(t- t:) - _,.(t- tz - _)

+ u.(t - t,) - u.(t - t, - A_)

u3 = -u.(t - fl) + u.(t - t_ -/x_) - u,(t - t3)

-b us(t -- t3 -- dX3) -- us(t -- ts) + us(t -- t5 -- AS)

where we have 11 unknowns to be determined, and tj and A s are defined as in

Fig. 2.2.

The robust time-optimal solution can then be obtained by solving the

constrained parameter optimization problem

subject to

rnin J = t5 + As (2.77)

Ao -- A1 + A2-- A3 + A4-- As = 0
s

o+ + 2t, = 0
5=0

5

_":_(-1)J[sin(w2t.i) - sin(w2(ti + A.i)) ] = 0
j=0

$

_(-l),[cos(_t_) - cos(,o_(tj+ _11] = 0
)-0

$

_"_[(-1) j sin(w3tj)- sin(w_a(tj + A.,))] = 0
j=O
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5

._:0

5

_(-1),[t, cost=t,- (t, + :_,)cos_=(tj+ _)l = 0
3----0

5

_(-1):[t, sin_t: -(t: + :_:1sin_(t: + _,)J = 0
J:0

5

_"_(-l)'#[t., cos w3t_- (tj ÷ AT)cos_3(¢, ÷ A T)] = 0
j:0

5

_.(-l)J[tjsinw3t: -(t: ÷ A:) sinw3(t: ÷ A:)] = 0
j:0

A___>O; j = O, 1,2,3,4,5

tl, t2, t3, t4, t5 >0; to--O

A solution to this problem is

to : 0.000,

tl : 3.774

t2 : 2.030

t3 : 5.778

t4 : 4.152

ts = 7.968

tf = 8.187

Ao : 0.2189

Al : 0.2609

A2 : 0.3594

A3 : 0.3594

A4 = 0.2609

As : 0.2189

(2.78)

The time responses of z3 to the robust time-optimal control inputs are

shown in Fig. 2.8 for four different values of k = k_ = k2. The robustness has

been increased at the expense of the increased maneuvering time of 8.187 sec, as

compared to the ideal minimum-time of 4.362 sec. However, the control on-time

is only 1.678 seconds! Because of the properly coordinated pulse sequences, the

flexible modes are not significantly excited during maneuvers and the residual

responses after the maneuvers are well desensitized.

Now consider the effects of the accuracy of the switching time of firing
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of the pulses. The solution of Case2-3 is now truncated to 2 decimal places :

to=0.00, A o=0.21

t,=3.77, A,=0.26

t2=2.03, A2=0.35

ts=5.77, A3=0.35

t4=4.15, A4=0.26

ts=7.96, As--0.21

t/ = 8.18

(2.79)

The time responses of xa to the robust time-optimal control inputs are shown

in Fig. 2.9 for four different values of k = k, = k_. The residual vibrations have

not increased and the response is robust to the switching time. Now consider

truncating the solution to one decimal

practice, as follows:

place, which may be too unrealistic in

to=0.0, Ao=0.2

t, =3.7, A,=0.2

t2=2.0, A2_0.3

ta=5.7, A3=0.3

t4=4.1, A4=0.2

ts=7.9, A s=0.2

t I =8.1

(2.80)

The time responses of x3 to the robust time-optimal control inputs are shown in

Fig. 2.10 for four different values of k = kt = k2. Again the residual vibrations

have not increased but the steady-state solution has an offset.

2.4 Summary

In this chapter, we have demonstrated that the proposed robustifica-

lion or desensitization approach does generate robust time-optimal open-loop

control inputs for an uncertain dynamical system. Furthermore, on the con-

trary to a common notion, the results of this chapter indicate that properly

coordinated, on-off pulse sequences can achieve a fast maneuvering time with

a minimum of structural vibrations during and/or after a maneuver, even in
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the face of plant modeling uncertainty. The time-optimal responses have been

desensitized at the expense of the increased maneuvering time. It is again

emphasized that simply prolonging the maneuver time does not help to re-

duce residual structural vibrations caused by modeling uncertainty; a proper

coordination of pulse sequences is necessary, as demonstrated in this chapter.

Table 1: Summary of the results

Time-Optimal Control
Jet On-Time

Case 2-1
J" = t/(sec)

6.511 6.511

Case 2-2 5.340 4.172

Case 2-3 4.362 2.234

Robust Time-Optimal Control

Jet On-Time

Case 2-I
J" = t/(sec)

10.18 10.18

Case 2-2 7.360 4.765

Case 2-3 8.187 1.678

The resulls of this chapter are summarized in Table 1. As can be

noticed in this table, it is natural to select the actuator configuration of Case

2-3, since this case provides the "best" overall performance in the sense of min-

imizing the maneuvering time, fuel consumption (jet on-time), and structural

mode excitation. For Case 2-1, the maneuvering time and the jet on-time are

the same, which is clearly undesirable from the viewpoint of fuel consumption.

To avoid such und_.sirable continuous jet firings during a maneuver, a robust

fuel- and time-optimal control problem will be treated in the following chapter.

2.5 Conclusions

A time-optimal open-loop control problem of flexible spacecraft in

the face of modeli_Jg uncertainty has been investigated. The primary study
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objective was to explore the feasibility of computing open-loop, on-off pulse

control logic for uncertain flexible spacecraft. The results indicate that the pro-

posed approach significantly reduces the residual structural vibrations caused

by modeling uncertainty. The results also indicate the importance of a proper

jet placement for practical trade-otis among the maneuvering time, fuel con-

sumption, and perf_rmance robustness.
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Chapter 3

Robust Fuel- and Time-Optimal Control of Uncertain

Flexible Spacecraft

3.1 Introduction

The fuel- and time-optimal control problem of flexible spacecraft is

in general a difficult problem to solve, even for a case without plant modeling

uncertainty (e.g., see [14,1,5,16]). A standard, optimal control approach to such

a problem requires an accurate plant model, and thus the resulting solution

becomes sensitive to variations in model parameters. For this reason, a pulse-

modulated, classical feedback controller is often employed for real spacecraft

equipped with reaction jets [13,17].

In this chapter, however, we attempt to develop robustified,open-

loop, fuel-and time-optimal control inputs for uncertain flexiblespacecraft,

which areoftenrequiredto maneuver as quicklyas possiblewithoutsignificant

structuralvibrationsduringand/or aftera maneuver. In particular,we inves-

tigatethe rest-to-restmaneuvering problem of a flexiblespacecraftequipped

with on-of["reaction jetsin the presence of uncertainty in model parameters.

Expanding on the recentresultsof [I1,12],we formulate a constrained optimiza-

tion problem, where the objectivefunction to be minimized isa weighted sum

of the consumed fueland the maneuvering time,with additionalconstraints

forrobustnesswith respectto plantmodeling uncertainty.

We assume that the mass of the consumed fuelissmall compared
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with the mass of the spacecraft, and that the consumed fuel is proportional to

the jet on-time. We further assume that the structural flexibility and mass dis-

tribution of the vehicle are more uncertain than the total mass of the system.

Consequently, we focus on the robust control problem of flexible spacecraft in

the face of modal frequency uncertainty. Furthermore, many theoretical and

practical implementation issues inherent to a constrained parameter optimiza-

tion problem are not elaborated in this chapter. The ultimate research goal of

the future is to develop nonlinear feedback control logic for achieving the robust

time-optimal performance similar to that presented in this chapter. As a first

step toward such a research goal we emphasize the formulation of a robust fuel-

and time-optimal control problem of flexible spacecraft and we investigate its

solution in terms of switching patterns.

Other robustified, open-loop appL:oaches attempt to find a smooth

continuous forcing function (e.g., a versine function) that begins and ends with

zero slope. The basic idea behind such approaches is that a smooth control

input without sharp transitions is less likely to excite structural modes during

maneuvers. The results of this chapter further confirm that most open-loop

approaches, which utilize a smooth continuous control input so that structural

modes are less likely to be excited, do not fully utilize the available control

energy in performing a time-optimal maneuver.

The remainder of this chapter is organized as follows. Section 3.2 de-

scribes the fuel- and time-optimal control problem of flexible spacecraft without

modeling uncertainty. The control problem is transformed into a parameter op-

timization problem in which the objective function is a sum of the final time

and the jet on-time. A simple dynamical system with a rigid-mode and one/two

flexible mode, shown in Fig. 3.1-3.3, is used to illustrate the concept. Three
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cases ( Case 3-1, Case 3-2 and Case 2-1) are explored (see Figs. 3.1-3.3). Sec-

tion 3.3 describes the same problem that of Section 3.2 but with consideration

of the presence of modeling uncertainty. Robustified fuel- and time-optimal

solutions are then compared with an ideal solution obtained in Section 3.2.

3.2 Fuel- and Time-Optimal Control

3.2.1 Problem Formulation

Consider a flexible spacecraft described by

M_ + Kz = Gu (3.1)

where z is a generalized displacement vector, M a mass matrix, K a stiffness

matrix, G the control input distribution matrix, and u the control input vector.

Equation (3.1) is transformed into the modal equation:

_ + II2y =

where y is the modal coordinate vector, 122

Cu (3.2)

- diag(w_), _, the i 'h modal fre-

quency (wa = 0 for the rigid body mode), and ¢ the modal input distribution

matrix.

In this chapter, we consider a simple model of a flexible spacecraft

with a rigid-body mode and one dominant flexible mode, as shown in Fig. 3.1.

We explore two cases for this system with two control inputs, u+ and u_, which

are bounded as

0_< u+ <+1 (3.3)

-1_< u_ <0 (3.4)

For Case 3-1, both u+ and u_ are acting on body 1, resulting in a typical case

with a two-sided control input ul with lull _< 1. For Case 3-2, u+ is placed
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on body 1 and u_ is placed on body 2, resulting in a case with two one-sided

control inputs: u_ = u+ and u_ = u_. For Case 2-1 both u+ and u_ are acting

on body l, of the three mass-spring system.

The boundary conditions for the rest-to-rest maneuver are expressed

in modal coordinates as:

for i = 2,...,n

m(0) = 0, re(t j) = ]
_,(0) = 0, _,(tl) = 0
_,(0) = 0, y,(t,) = o
_(0) = o, _(tl) = 0

(3.5)

For a fuel- and time-optimal control problem, the objective function

to be minimized is, in general, a weighted sum of the maneuvering time and

the consumed fuel. However, we consider here the following objective function

which is simp'ly a sum of the maneuvering time and the product of weight a

and total jet on-time:

-- f0" {1 + o(lu+l + lu-I)}dt (3.6)J

The problem is then to find the control inputs which minimize the performance

index J subject to Eqs.( 3.2)-(3.4). In Section 3.3, we investigate the same

problem as above but with additional robustness constraints with respect to

plant modeling uncertainty.

3.2.2 Rigid Body Fuel- and Time Optimal Control

For a. rigidized model of the nominal model discussed the equation of

motion is

(ml + ms)i: = u (3.7)
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The rest-to-rest manuever,fuel- and time-optimal solution for the objective

function given by Eq.(3.6) can besolvedusing control input as a combination

of unit-step function u, as

u = _',(0 - u.(t - A) - _,.(t - t,) + ,,,(t - t, -- _,) (3.S)

The solution is A = _(m, + m2)/(2a + 1) and t/ = 2A(a + 1) = 3.2";" sec

for a = 1. When this solution is applied to the flexible model there is residual

vibration present and it remains even by prolonging maneuvering time for large

weight a.

3.2.3 Parameter Optimization Problem

The control inputs u+ and u_ can be expressed as a combination of

unit-step function u, as

N-I

_,+ = _ b,,(t- t,) - u,(t - t, - %)] (3.9)
j=0,2

N

"- = _C[-,,.(t- t,) + ,,,(t - t, - A,)] (3.t0)
'1=1,3

which are in the form of one-sided pulse sequences as shown in Fig. 3.4. The

jth pulse starts at tj and ends at (t# + Ai). Aj is the jth pulse duration. Due

to the symmetric nature of the rest-to-rest maneuvering problem, we assume

that u+ and u_ have the same number of pulses, (N + 1)/2, where N is defined

as in Fig. 3.4.

Substituting Eq. (3.10) into Eq. (3.2) and incorporating the boundary

conditions of Eq. (3.5), we get the time response of the rigid-body mode as

N-11

y,(t > t_)= _[¢,, _ (2tAj - 2tj_j - All
jffiO,2

N

-_,, :_ (2t_,- 2t,Aj - _11] (3.11)
,i=1,3
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where ¢,: is the (i,j) element of the modal input distribution matrix _. For a

given boundary condition, y1(t _> t/) = 1, the following constraint must hold

N-1 N

¢11 _ _:-¢12 _ A:- 0 (3i2)
j:O,2 j: l,3

The rest-to-rest constraint for the rigid-body mode then becomes

N-I N

2- _,__ [2_;:_j- A_]+ _ _ [2t,_, - ,_1 : o
j:0,2 j:l,3

(3.13)

Substituting Eq. (3.10) into Eq. (3.2) and solving for the time response

of the i th flexible mode, we get.

v,(t)
1 N-I N

j=O,2 ./----.1,3

1 N-_ N

+_Tsin(w;t)[¢ia _ sq--¢,2 _ sij]
j=O,2 j= 1,3

(3.14)

where

cq

sij

= cos(w#-/) - cos(_i(t: + A:))

= sin(w,t:) - sin(wi(tj + A-/))

for t _ t].

Also, rest-to-rest maneuvering requires yi(t) = 0 for t >_ t.t; i.e., we

have the following flexible mode constraints for no residual structural vibration:

N-1 N

-_,1 _ _, + _,_ _ c;_ = 0 (3.15)
3=0,2 3=1,3

N-1 N

¢ix Y_ sij-¢i2 _ si,i = 0 (3.16)
j----0,2 jffil,3

for each flexible mode.
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Since Eqs. (3.12), (3.13), and (2.14) are the necessaryconditions for

optimal solution, the fuel- and time-optimal control problemcanbe formulated

as a constrainedparameteroptimization problem asfollows:
N

rain J = t1+c_ _ Aj (3.17)
j=O,1,2

subject to the constraints given by Eqs. (3.12), (3.13) and (3.16).

3.2.4 Case 3-1

Consider a case where two control inputs u+ and u_ both are acting

on body 1. The control inputs are then assumed as:

u+ = u,(t)-u,(t- A)

u_ = -u,(t - t_) + u,(t - t_ - A)

(3.18)

(3.19)

where the pulse sequence is defined as shown in Fig. 3.2, and the maneuver time

t! = tl + A. The nominal parameters are: m_ = m2 = k = 1 with appropriate

units. The corresponding matrices f_2 and • in Eq. (3.2) are

= 02 511

The constraint equations can be obtained as :

tlA -- A 2 -- 2 = 0

cos(wt//2) -- cos(w(t//2 -- A)) = 0

(3.20)

(3.21)

where _ = V_.

The fuel- and time-optimal solution is obtained by solving the con-

strained minimization problem:

minJ = II+2A
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subject to the preceding constraints. The solution of this problem is obtained

a.5

/_ = 0.45016

tl = 4.44288

t! = 4.89304 (3.22)

The time responses of z2 (the position of body 2) to the fuel- and

time-optimal control inputs are shown in Fig. 3.5 for four different values of

spring stiffness k. For the nominal case with k = 1, the jet on-time is now

significantly reduced by 79% while the maneuvering time is increased by 18%,

comparing to the time-optimal case. (The time-optimal solution for Case 2-

1 of chapter 2 has both maneuvering time and control on-time of 4.128 sec.)

As expected, however, significant residual structural vibrations can be seen in

Fig. 3.5 due to variations in the uncertain parameter k.

3.2.5 Case 3-1b

Consider a special case of identical to Case 3-1 but with a longer

maneuver time by increasing the weight a on the fuel in the cost function.

min J = tl + 2C_A

subject to the constraints given by Eqs(3.21). The solution of this problem for

a = 10 is obtained as

A = 0.225

tl = 8.88

t I = 9.11 (3.23)
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The time responsesof x2 (the position of body 2) to the fuel- and time-

optimal control inputs are shown in Fig. 3.6 for four different values of spring

stiffness k. The residual vibrations are still significant and are not reduced

by increasing the maneuver time. Robustness to parameter variations is not

achieved by increasing maneuver time.

3.2.6 Case 3-2

Consider Case 3-2 shown in Fig. 3.2 with two control inputs ul and

us acting on body 1 and body 2, respectively. The control inputs are assumed

as

ul = u,(t)- u,(t - A) (3.24)

u2 = --u,(t -- q) + u,(1- -- 1,1-- A) (3.25)

and the maneuver time t! = tl + A. The matrices f/a and _ are

fl_= 0 2 2 1 -1

The constraint equations can be obtained as :

tt - 2/A - A = 0

sin(wtl/2 ) + sin(co(A -- ti/2)) = 0

(3.26)

(3.27)

The fuel- and time-optimal solution is obtained by solving the constrained

minimization problem:

minJ = t/+2A

subject to the preceding constraints.
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The solution is obtained as

= 0.9003

tl = 2.2215

tf = 3.1218

The time responses of x2 to the fuel- and time-optimal control inputs

are shown in Fig. 3.7 for four different values of spring stiffness k. Comparing

to the time optimal case, the jet on-time is now significantly reduced by 56%

while the maneuvering time is also reduced by 24%. This result indicates the

importance of proper jet placement in the fuel- and time-optimal problem. As

expected, significant residual structural vibrations can be seen in Fig. 3.7 due

to variations in the uncertain parameter k.

3.2.7 Case 2-1

For Case 2-1, as illustrated in Fig. 3.3, two one-sided control inputs

are bounded as

0_< u+ <+1 . (3.28)

-1 < u_ _<0 (3.29)

For this case, the time-optimal control inputs are assumed as:

,,, = ,.,.(0- ,.,.(t- Ao)

4- Uo(t - t2) - u,(t - t2 - A2) (3.30)

u2 = -u.(t - t,) + u.(t - t, - A,)

-- u.(t -- t3) 4- u.(t -- t3 -- A3) (3.31)
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The modal equations for this case are

_, = 0.3333(u+ + u_) (3.32)

_ +_gY2 = 0.5(u+ + u_) (3.33)

2
Y3+w_Y3 = 0.1667(u++u_) (3.34)

where w2 -- 1 and w3 = V_. The rest-to-rest maneuver constraints are

A 0 -- A, + A 2 - A 3 = 0 (3.35)
3

6 + _'_.(- 1)J[/X,_ - 2tjAj] = 0 (3.36)
j=.O

3

(- 1)J[cos(_2ti) - cos(_2(tj + Aj))] = 0 (3.37)

• 3

:_'(-1)J[sin(_ti) - sin(w2(t, + Aj))] = 0 (3.38)
j=O

3

(- 1)J[cos(_3t,) - cos(w3(t, + A,))] = 0 (3.39)
1--.0

3

_"_(-ly[sin(w3tj)- sin(w3(t_ + AS))] = 0 (3.40)
./sO

The time-optimal solution can then be obtained by solving the constrained

minimization problem:
3

rain J = t! + _-_. Ai (3.41)
i--0

subject to the constraint given by Eqs. (3.40).

A solution of this problem can be found as

to = 0.0000, Ao = 0.400

tl = 4.536, A1 -- 0.135

t2 = 2.582, A2 -- 0.135

t3 = 6.854, A3 = 0.400

t/ = 7.251

(3.42)

The time responses of z3 to the fuel and time-optimal control inputs are shown

in Fig. 3.8 for four different values of k = kl = ks. Now consider the time
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responseof the rigid body fuel- and time-optimal control solutions with final

time t/ = 7.35 seconds. The residual vibrations are much larger and the flexible

mode is significantly excited as shown in Fig. 3.9.(Rigidized Case 2-1)

3.2.8 Case 2-1b

Consider a special case of identical to Case 2-1 but with a longer

maneuver time by increasing the weight _ on the fuel in the cost function.

3

min J = t/ + a _ Ai
i--O

subject to the constraint given by Eqs. (3.40).

A solution of this problem for a = 14 _:an be found as

to = 0.0000, Ao = 0.153

t_ = 11.762, A_ = 0.092

t2 = 2.152, A 2 = 0.092

t_ = 13.854, A3 = 0.153

t/ = 14

(3.43)

(3.44)

The time responses of x3 to the fuel and time-optimal control inputs are shown

in Fig. 3.10 for four different values of k = kl = k2. The residual vibrations

are still significant and are not reduced by increasing the maneuver time. Ro-

bustness to parameter variations is not achieved by increasing maneuver time.

Robust Fuel- and Time-Optimal Control

Problem Formulation

As illustrated in Figs. 3.5 and 3.7, a standard, optimal control ap-

proach requires an accurate plant model and thus the resulting solution is not

robust to plant modeling uncertainty. For this reason, an open-loop optimal

control approach is seldom used in practice. In this section, we attempt to
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develop robust, open-loop, fuel- and time-optimal control inputs for flexible

spacecraft. Expanding on the results of the previous section, we formulate

a parameter optimization problem, where the objective function to be min-

imized is a weighted sum of the consumed fuel and the maneuvering time,

with additional constraints for robustness with respect to structural frequency

uncertainty.

To attenuate residual vibrations of the flexible modes, the energy of

the residual vibrations should be minimized, where the energy of the residual

vibration is proportional to the square of the amplitude. Thus, Eq. (3.14) can

be written as

yi(t >_ tl) = A sin(wit) +.'/3 cos(wit)

where A, B are functions of wi and ¢ij and

(3.45)

C 2 = A 2 + B 2 (3.46)

dC _ dC 2 dwk

dp--"_= d_k dp[ (3.47)

where pi is the i th uncertain parameter. For these derivatives to be zero (t _> t/) ,

N-1 N

-*,, _ gi`i+ ,i, _ gi`i = 0 (3.48)
j-_O,2 j----l,3

N-1 N

_bi, Y_ hi`i-¢i2 _ hi.i = 0 (3.49)
2----0,2 2----1,3

we get

where

gi`i = tjcos(w,t`i) - (t i + A`i)

cos(wi(t`i+ AA) (3.50)

hit = t.i sin(wit i) - (t.i + A`i)

sin(wi(t.i + A`i)) (3.51)
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Eqs. (3.48)-(3.49) are called the first-order robustnessconstraints. Similarly,

the rthorder robustnessconstraints can beexpressedas

g, = (tj) mcos(_,,.t:)

-(t: + _j)" cos(_,(t: + _j)) (3.52)

h_, = (tj) "_sin(_,t_)

-(tj + Aj) _ sin(w;(tj + Aj)) (3.53)

form= 1,2,...,r.

These robustness constraints are incorporated in the constrainted pa-

rameter optimization problem formulation. Consequently, the number of pulses

for each control input is changed to match the ificreased number of constraints.

As an example, we consider the first-order robustness constraint, incorporated

with the rest-to-rest maneuver constraints, to determine robust fuel- and time-

optimal pulse sequences..

3.3.2 Case 3-1

Assuming that each input has two pulses, we can represent the control

inputs as follows:

u+ = uo(t) - u,(t - _o) + u,(t - t2)

-u,(t - t_ - Ix2) (3.54)

u_ = -u,(t - t_) + u, Ct- t_ - At) - u, Ct- t3)

+u,(t - tz - A3) (3.55)

where there are 7 unknowns to be determined, and tj and A, are defined as

shown in Fig. 3.3.
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The robust fuel- and time-optimal solution can then be obtained by

solving the constrained parameter optimization problem:

rain J = ta + _3 + ( Ao + Al + A2 + _3) (3.56)

subject to

A o- A_ + A2 -- _3 = 0
3

_(-1)J[2t, A, + A_]+ 4 = 0
5=0

3

_(-1)_[cos,,t, - cost(t, + _11 = 0
3----0

3

_(-ly[sin_,t_ - sin_o(t,+ A,)1-- 0
j=0

3

_(-1),[t_ cos_t, - (t, 4-_,)cos_o(t_.+ A;)1= o
.i=0

3

_(-ly[t, sin_t_- (t, + A:)si_,(t, + A,/] = o
j=0

A__>0; j=0,1,2,3

tl, t2, ta>O

A solution to this problem is obtained as:

to = 0.0000,

tl = 4.1575,

t2 = 2.3732,

t3 = 6.5418,

Ao = 0.2379

Al = 0.2489

A2 = 0.2489

Aa = 0.2379

(3.57)

The time responses of z2 to this robust fuel- and time-optimal control

inputs are shown in Fig. 3.11 for four different values of k. It can be seen that

the robustness has been significantly increased at the expense of the increased

maneuvering time of 6.78 sec. The jet on-time is 0.97 sec. Fig. 3.11 illustrates

the reduction in residual vibration.
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3.3.3 Case 3-2

Now consider Case 3-2 with two control inputs expressed as:

_1 = _,(t) - _,(t - _o) + _,,(t - t_)

-u.(t-t2 -A2)

,,2 = -,,,(t - tl) + ,.,.(t- t, - A,) _ u.(t - t3)

+u,(t - t3 -/x3)

where there are 7 unknowns to be determined.

The problem is to minimize the following objective function

(3.58)

(3.59)

subject to

rain J=t3+A3+(Ao+A1 +/k2+/k3)

Ao- A1 + A2 - A3 = 0
3

_(-1)'[2t_A, + A_]+ 4 = 0
j----0

3

_[cos _tj -cos_(tj + Aj)] = 0
j=0

3

_"_[sin wt, - sinw(tj + A_)] = 0
2----0

3

__,[t,cos,,.,tj-(t: + _:)cos,,.,(t_ + %)] = 0
3,=.0

3

_"_[ti sinwt, - (t_ + A)) sinw(tj + Aj)] = 0
./=0

A t_>0; j=0,1,2,3

tl, t2, t3>0

(3.60)
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A solution to this problem is obtained as:

to = 0.0000,

tl = 2.5918,

t2 = 1.9151,

t3 = 4.5545,

A0 = 0.3762

A1 = 0.4238

A: = 0.4238

A3 = 0.3762

(3.61)

The time responses of z2 to this robust fuel- and time-optimal control

inputs are shown in Fig. 3.12 for four different values of k.

From Fig. 3.12, we notice that the residual vibration has been reduced

considerably.

3.3.4 Case 2-1

For Case 2-1, we can represent the control inputs as follows:

u+ = u,(t) - u,(t -/%) + u,(t - t2)

- u.(t - t2 -/'2) + u.(t - q) - u.(t - q -/'4)

u_ = -u.(t - t,) + u.(t - t, -/',) - u.(t - t3)

+ u.(t - h - A3) - u.(t - ts) + u.(t - t5 -/',s)

where we have 11 unknowns to be determined, and tj and/'j are defined as in

Fig. 3.3.

The robust time-optimal solution can then be obtained by solving the

constrained parameter optimization problem

$

rnin J = t I + y_ Ai (3.62)
i_.O

subject to

Ao --/`1 "{" A2 --/'3 "k /%,1 -- AS -" 0

5

6+ - 2tjAJl=o
j--O
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5

EI-1):[cos(._t:) - _o_(.,_(t:+ %))] = o

s

_.,(-1):[sin(.p_t:) - sin(wa(t._ +/Xj))] = 0
3=0

5

_(- 1):[cos(_zt:)- cos(,,.,_(tj+ ,_,))] = o
.7=0

5

_'-_(- 1):[sin(_3t,) - sin(_3(t_ + _))1 = 0
j=0

5

_(-1):[_, cos(,.,_,)- (t, + ,_,)cos(,_(t:+ _,11]= o .
,/=0

5

_(-1):[t: sin(w2t:) -(t_ + A_) sin(a_;(t: + A:))] = 0
3=0

5

__,(-l):[t, cos(,,.,_tj)- (t, + _,1 cos(,,,_(t,+ _,1)] = 0
.,,----0

5

_(-i):[l,sin(,,,_t,)- (t:+ _,)sin(,,,_(t:+ ,_:11]= o
./=-0

&_O; j = 0,1,2,3,4,5

tl, t2, t3, t4, ts _> 0 ; to = 0

A solution to this problem is:

to = 0.0000, A0 = 0.1209

t_ = 6.6158, A_ = 0.1411

t_ = 2.3022, A2 = 0.2018

t3 = 9.0502, A3 = 0.2018

t4 = 4.7973, A4 = 0.1411

t5 = 11.433, A 5 = 0.1209

t! = 11.554

(3.63)

The time responses of z3 to the robust fuel and time-optimal control

inputs are shown in Fig. 3.13 for four different values of k = kl = ks. The jet

on-time is 0.927 sec. Now consider the time response of the rigid body fuel- and

time-optimal control solutions with final time t! -- 11.2 seconds. The residual

vibrations are much larger and the flexible mode is easily excited as shown in
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Fig. 3.14. Thus the flexible modescannot be neglectedin the model for they

can be easily excited.

Now consider the effects of uncertainty in the switching time of firing

of the pulses. The _olution of Case 2-1 is now truncated to 2 decimal places :

t0=0.00, A0=0.12

t1=6.61, A1 =0.14

t2 = 2.30, Zh2 = 0.20

t3=9.05, A3=0.20

t4=4.79, A4=0.14

t5=11.4, A5=0.12

t! = 11.5

(3.64)

The time responses of z3 to the robust time-optimal control inputs are shown in

Fig. 3.15 for four different values of k = kl = k2. The residual vibrations have

not increased and the response is robust to the switching time. Now consider

truncating the solut ion to one decimal place as:

to = 0.0, Ao = 0.1

tl = 6.6, At = 0.1

ts = 2.3, As = 0.2

t3 = 9.0, A 3 = 0.2

t4 = 4.7, A, = 0.1

ts= 11.4, As=0.1

t! = 11.5

(3.65)

The time responses of x3 to the robust time-optimal control inputs are shown in

Fig. 3.16 for four different values of k ffi kt = ks. Again the residual vibrations

have not increased but the overall rigid body motion has an offset.

3.4 Conclusions

Robust fuel-and time-optimal control problem of flexiblespacecraft

in the face of modeling uncertainty has been investigated. In particular,the

rest-to-restmaneuvering problem of a flexiblespacecraftequipped with on-off
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reaction jets is considered. The rigid body solution is shown to have signifi-

cant residual vibrations even for cases with prolonged maneuver time and it is

necessary to include the flexible modes in the model. The results indicate that

the proposed approach significantly reduces the residual structural vibrations

caused by modeling uncertainty.
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_Xl _-_ X2

U"

o<u_-< l and -I<u__o

Figure 3.1" Case 3-1

"--4_ X 1 _4_ X2

O<u_; I and -l<u2<O

Figure 3.2: Case 3-2
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u h-, h-,,

Case #3:0 _ u._+l. -I< u__O

Figure 3.3:Case 2-I

-I
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u2

t2 tN.1

tl t3 tN t

U U.-.U
A1 A 3 A N

Figure 3.4:Pulse sequences.
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Figure 3.8: Responses to fuel and time-optimal control input (Case 2-1).
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Chapter 4

Sliding Mode Control Design for Uncertain Flexible

Structures

4.1 Introduction

Open-loop controllers do not have feedback information of errors

which arise due to uncertainties in the plant. As a result it would be bet-

ter to use closed-loop feedback controller which should be robust to allow for

plant uncertainties. Any feedback design which provides better robustness to

parameter variatiofJs with no residual vibrations would be a viable alternative

to robustified time optimal control logic.

The ultimate goal of the future is to develop feedback control logic for

achieving the robust time-optimal performance presented in the earlier chapter.

Any scheme should not cause structural excitation and should be robust to

parameter variations. The sliding mode control method is used in an attempt

to design a controller with the desired properties. The idealized sliding mode

control has a high frequency control activity and this is eliminated by the use of

boundary layer. The sliding mode control allows for parameter variation of the

nominal plant paraJneters. Since the sliding mode control method does not use

bounded controls, a saturator is used to attain bounded controls. The boundary

layer concept elimbiates chattering by trading off" with tracking performance.

The good choice of the sliding function which is a weighted sum of the errors

enables one to derive a control law. The sliding control method is applicable to
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simple systems with decoupled equations of motion. The equations of motion of

flexible spacecraft is modelled with the spring mass configuration. The modal

equations are decoupled and this makes it possible to obtain the sliding mode

controller.

The remainder of this chapter is organized as follows. Section 3.2

describes the variable structure system from which the sliding mode control is

developed. Section 3.3 discusses the mathematical details of the sliding mode

control theory. The boundary layer method and the robustness to parameter

variations as applied to ideal sliding mode control is discussed. In Section 3.4

the benchmark problem of an uncertain flexible structure is defined and the

sliding mode control design is shown in Section 3.5. The simulations of the

responses are showlJ for the nominal and perturl_ed parameters of the model.

4.2 Variable Structure Control

The variable structure control uses switching logic for control. This

utilizes functions which would be used as switching functions for switching the

control actions to on and off states. This switching function uses information

of output feedback.

Consider a system of the form :

= I(=,t)+ B(x,t)u (4.1)

where f and B are matrices and u is the control vector. The components of

thisvectoru is determined by

_" u+; si(z) > 0 (4.2)ui(z,t)
t u?; si(z) < 0

where si(x) is the switching function mad u+,u._ are the components of control

u. The phase plane of the dynamics axe utilized in designing the switching
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functions to yield the control laws. The sliding mode control has been devel-

oped from variable structure control. The variable structure control system

has several substructures which may be unstable. Such cases are unacceptable.

Sliding mode controller can be obtained as a special case of variable struc-

ture control when the right hand side of the equations of motions describing

the dynamics has discontinuities on certain surfaces in system phase spaces.

The discontinuous control actions of the sliding mode can be viewed as an at-

traction of phase trajectories onto the sliding surface in phase space. When

the trajectory approaches the sliding surface, the perturbations about the sur-

face becomes discofJtinuous causing high frequency chattering on/off of control

states. This is highly undesirable. Sliding mode control provides robustness

to parameter variations, robust performance to take care of plant uncertainties

and external disturbances.

4.3 Sliding Mode Control Theory

The sliding mode control system is a high gain system and utilizes a

high control authority for the trar.king problem. The large bandwidth provides

a fast settling time. Robust control using a feedback scheme is more effective in

treating the plant parameter uncertainties as compared to open loop schemes.

The sliding mode control is employed for designing the control law for uncertain

flexible structures. ['he sliding mode control has been developed from the vari-

able structure modr: control [22,23,24,25]. The sliding mode control is robust

to plant uncertainties and external disturbances. The trajectory of motion of

system as illustrated in Fig. 3.1 is causing discontinuity in control action. This

is the case when the trajectories are attracted from both regions _+ and _-.

Once it reaches this discontinuous surface the motion occurs along the surface.
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This motion is known as the 'Sliding Mode'. This is the ideal case of sliding

mode. The real sliding mode occurs with uncertain plants having parameter

variations and unmodeUed dynamics. The real sliding causes finite frequency

control switches and the trajectory to jump across the discontinuous surface

s_(z). Consider the system

= f(z,t,u) (4.3)

{ u+; si(x) > 0 (4.4)Bi(X, t)
u.; s,(z)<0

where = [xl ..... r are the coordinates of the system, f = [A,..., f,,]r

and u = [ul,... ,u,,] r. u, has discontinuities on the surface s,(z) = O.

A sliding Jnode exists for a region of non-zero measure on the surface

s(z) = 0 if the projections of f+ = f(z,t,u +) and f- = f(z,t,u-) are of

opposite signs on the tangent to the surface and are directed towards it. Also,

we have

tim ._ < 0 (4.5)
,_,o-

lira ._ > 0 (4.6)
$.-,0÷

The solutions of the system of equations with the right hand side discontinuous

appears in the sliding mode. Filippov's continuation method is used in this case.

The system under consideration is linear with respect to u.

Let G be m x n matrix whose rows are given by

(4.7)
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The equivalent control fi is obtained as

Gf + GB_ = 0 (4.8)

= -[GB]-'Gf (4.9)

* = f-B[GBI-'Gf (4.10)

provided [GB] -l exists and the initial conditions s(z(0)) = 0. This is baaed on

the following property

_(z) =0 (4.11)

Now consider the case of real slidingmode where the motion occurs near a

finite6 vicinityof the manifold s(z) = 0;

IIs(=)II---6,IIs(x)II = x_s, _ (4.12)

Let r(s,x) be the distance between any point in the neighbourhood and the

manifold s = O. It is given by

r(,_,x) _< P6 (4.13)

where P is a positive scalar. The real sliding case results in

= f(:r, t) + B(x, t),a(x,t) (4.14)

where ti incorporates non-idealities and Bfi satisfies the Lipschitz conditions

(piecewise continuous and bounded). This is in agreement with most real

systems.

= fe(z,t) (4.15)

fo = #f+ + (I -#u)f- (4.16)
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for 0 </_ < 1 and f0 is a convex hull of f + and f-. Define ._, f+, .t_ as vectors

joining origin to points fo f+, f- respectively and gradient vector Vs. From

Fig. 3.2 it can be s_,en that

vs.L=o (4.17)

Due to frequent switching let the state velocity be f+ and f- at time 6tl and

dit2 respectively. Then substituting

6tl (4.18)
I_ = 6tl + 6t2

into Eqs. (4.16) w_, get

/o = (6t,I- + 6t=f-)/(6t, + _t=) (4.19)

i.e., fo is the average velocity of motion. Now expanding Eqs. (4.17) we get

_f* _.(1 - _,)f-l(O/az)s =

# "

Substituting for/_ in Eqs. (4.16) we get

0 (4.20)

f-(a/az)s (4.21)
(1- -/+)(a/ox)s

= [(f-(O/Oz)s)f + - (f+(O/oqx)s)f-]/[(f- - f+)(O/Oz)s] (4.22)

This can be regard_.d as the sliding mode equations.

Theorem

If

1. On the interval [0, T] any solution x(t) of the system described by

Eq.(4.14) is such that the state trajectory is in 6 neighbourhood of the

manifold s(x) = 0, or the inequality (4.12) is valid;
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2. For the right hand side of Eq.(4.10) obtained using the equivalent control

method

x" =/Ix',t)- B(x',t)[G(x')B(z',t)]-tG(z')/(z',t) (4.23)

a Lipschitz constant l exist and z" is a solution of Eq.(4.14);

3. Partial derivatives of the functions B(GB) -l exist and are bounded in

any bounded domain.

4. For the righl hand side of Eq.(4.14) there exist positive constants q and

r such that

[[ f(x,t) + B(x,t)fi(x,t) [[<_ q + r [[ x [[ (4.24)

then for any pair of solutions to Eq.(4.14) and Eq.(4.23) under the initial con-

ditions

II_(o)- x'(o) I1_<v,s (4.25)

there exists a positive quantity h such that

IIx(t)- _-(t)II< ha (4.26)

for t • [0, I"].

The proof the above theorem lies in showing that the ideal sliding

and real sliding are close together provided the conditions stated hold. For a

real sliding ._ -_ 0 _ is the case in ideal sliding. The control fi will be obtained

8,8

fi -- -(GB)-ZGf + (GB)-'_ (4.27)

and substituting fi into Eq.(4.14) we get

= f(x,t) - B(_.,t)[G(z)B(z,t)]-zG(z)J:(z,t) + B(x,t)[G(x)B(x,t)]-'3

(4.28)
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The solution of Eq.(4.10) is given by

x'(t)=x'(O)+ {f(z',r)-B(z',r)[G(z')B(z',r)l-'G(x')f(x',r)}dr

(4.29)

The solution of Eq.(4.28) is given by

I'z(t) = x(0)+ {f(z,r)-B(z,r)[G(z)B(z,r)]-'G(z)f(x,r)}d_4.30)

+ fo' B(=,7-)[G(=)B(=,7")] -1 &d7- (4.31)

Now subtracting Eq.(4.31) from Eq.(4.29) gives

Z'II=(t) - ='(,)II -< p$+ Zll x - =" IItiT-+

IIB(=,7-)[C(=)B(=,7-)]-', II I_

+ fo' II _dB(=,7-)[C(=)B(=,7-)]-' IIII, IItiT- (4.32)

The condition givell by Eq.(4.24) and the bounded solution of Eq.(4.31) can

be combined as

fII=(t)I1<11=(0)II +rot + " II= IIdt (4.33)

using the BeUman-Gronwall lemma, the above inequality is

II z(t)II < (ll =(0)I1 +roT) e"r (4.34)

By using the conditions 1-3 of the theorem and inequality Eq.(4.34), we get

Z'II=(t) - ='(t) II< r_ + ! II= - =" IIdT- (4.35)

where p is a positive scalar. Bellman - Oronwall lemma applied on the above

inequality gives

II =(t) - ='(t) II< h,_ (4.36)
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where (t E [0, T]) and h = petr. This shows that if initially the actual and

ideal states are sufficiently close together, then they remain close over a finite

time. This result could also be extended to infinite time interval.

Now consider the exponential stability of linear time invariant systems

described by

= Az + Bu + g (4.37)

where A and B are constant matrices and disturbance is represented by g. The

sliding mode occur., along the intersections of si = 0 and satisfies

_ = CAz + CBu + Cg = 0 (4.38)

This results in equivalent control as

= -(CB)-'(CA= + Cg) (4.39)

which becomes

_" --: [I - B(CB)-'C]Az" + [I- B(CB)-'C]g (4.40)

where z" is the variable of ideal sliding case. In the case of real sliding case the

above relations are

= -((.'B)-'(Az + g) + (CB)-'_ (4.41)

= [I - B(CB)-'C]Az + [I - B(CB)-'C]g + B(CB)-'h (4.42)

The solution of the above two cases can be obtained as :

z'(t) = O(t)=.(O) _ ]a= )(t _ r)[l_ B(CB)_,C]g(1.)drt (4.43)

z(t) = ¢(t)z(O)- ¢(t - r)[/- B(CB)-'C]g(r)d_"

+ for O(t - r)B(OB)-' dd--Srdr (4.44)
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where 4) is the state transition matrix. Integrating the above and subtracting

them and taking the norms of both sides gives

II_:(t)- .'(,)II -< II¢(0 II II=(o)- :='(o)II ÷ [IB II II (CB)-' II II_(t) II

+ IIB II II (CB)-' II II_,(t)II II_(0) II

+ II ,_(t- r)B(CB)-' [] IIs IId_" (4.45)

II +(t)

val for asymptotically stable systems. Then the following inequality holds for

positive n

and

For real sliding the inequality H s [[< g holds and the functions

IIand f_ II_,¢(t - 7)II dr are bounded in the infinite time inter-

(4.46)II=:(t)- :,:-(t)I1<.a

forO < t <oo.

Ji.._z(t) = z'(t) (4.47)

Now the Filippov's method is applied to the above problem of linear

time invariantsystems. The convex hullin thiscase isgiven by

2 m

jo= f(z,t) + B(z,t) _-_g,u, (4.48)
i=l

where/_i > 0 and x-,2"- .._==P_ = I. The velocityvector lieson the slidingsurface

hulland hence Gf ° = 0. Let z = _,_ piu, and substitutingitgives

G(I + Bz)= 0 (4.49)

or

z = -(GB)-'Gf (4.50)
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which is the identical to Eq.(4.10). Thus the Filipov's method is in agreement

to the equivalent control method for the linear time invariant systems. The

following conditions hold for attraction to the sliding surface

l+(O/Ox)s < 0 ,x _ g+ (4.51)

f-(OlOx)s > 0 ,z E g- (4.52)

which can be combined as

d
_s (z;t) < 0 (4.53)

which is a local sliding condition. For a proper function s(:r, t) and a positive

scalar rI we have

d 2
_s (x;O _<-vlsl (4.54)

as the global sliding condition for a time varying case. Consider the single-input

single-output linear time-vaxying system

•t_ ") + a,,_x(t)x[ "-') +... + ao(t)z, = u (4.55)

Now define the statesas z(t) and the desiredstates zd(t) as

x(t) = [xl(t),_,,...,x["-')(t)] (4.56)

x._(t) = [x,l,(t),_dt,...,x('_-')(t)] (4.57)

= z(t) - z,(t) (4.58)

Assume

1. _(0) = o

2. [z_"+l)(t)l <_ r for all time and constant v
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Define the time varying S(z; t), the sliding surface as

s(_; t) = c_(t) = o (4.59)

where C = [c_,.... c._-i, 1]. Now the objective is to obtain control u(t), to

make s(z; t) = 0. Expanding the above equation we get

n-2 n-2

+ (4.601"- ¢;/4" I a_dl

l----O i----O

Assumption 1 and the uniqueness of solution of ordinary differential equations

would result in

z(t) = xd(t) Vt (4.61)

Set u as
n--I

. = _T(x)x + _ ki(z;t)_,+l " k,_sgn(s) (4.62)

Substituting for colJtrol in Eq.(4.55) to get

n _--I
ld _

i_l i----!

-sz_,,_+l - k.lsl (4.63)

The sliding condition results in the constraints

_i(3")

kdz; t)

k_(z; t)

---- _" < ai_t(t),xis > 0 Vt,i = 1,..., n (4.64)

-- _i" > ai-a(t), xis < 0 Vt, i = 1,..., n (4.65)

- ki+ < -ei,_i+ls > 0 V$,i = 1,...,n - 1 (4.66)

= k_" > e_,_i+ts < 0 Vt, i = 1,...,n - 1 (4.67)

> v (4.68)

When ci = 0 for some i, corresponding k_i+: is set to zero. The discontinuities

are at

x_ = O;_j = O, s = C_: = 0 (4.69)
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but control is discontinuous only at s(t) = 0. Combining Eq(4.54) and Eq(4.63)

1 d 2- t) <-(k, o)lsl (4.70)

for all t.

Parameter variations in sliding mode control is incorporated in the

constraints. Consider the finite bounds of parameter variations of a, as

c_, _< ai(t) < 7,, i = 0,...,n (4.71)

Then from Eq(4.64}-Eq(4.67) we get

#i+ _< a,-,

for i = 1 ..... n, c, mtrol yields z(t) = za(t).

external disturbance, given by

(4.72)

(4.73)

To incorporate robustness to

d(z;t) = [O,...,O,d,(x,t)] r (4.74)
n

Idt(z;t)l < _'_6/la:i1+60 (4.75)
i----I

The control law given by Eq(4.63) will yield z(t) = zd(t) as long as

/_+ .<_ ai-, - 6i (4.76)

/_i" -> 3'i-, - dii, i = l,...,n (4.77)

k,_ > v+60 (4.78)

are satisfied. The i,,itial condition assumption, x_(0) _ x(0), may be true and

this implies that the points in hyperspace may not be on the sliding surface.

But using the control law, the offset will asymptotically approach zero provided
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Eq(4.60) is stable. Let the class of nonlinear time-varying systems described

by

0_"_J=L(O1,O2,...,Op;t)+u_, j=l,...,p (4.79)

where, for i = 1,...,p and Oj = [Oi, Oi,...,O'_'-2] r. The tracking problem is

to make 0, approach 00. Define the trardcing error as O,(t) = Oj(t) - O_(t).

Now replace the discontinuous control by the continuous control law

si(O_;t)=C_Oj(t)

Define a boundary layer about the sliding surface as

(4.80)

s?(o,;t) "- si(oj;t)+C,,_ (4.81)

s_(e_;t) - sj(Oj;t)-Cjl_i (4.82)

where Cj_ > 0 and e./ is the hyper-radius of boundary layer. The boundary

layer Bj(t) is defined by

Bj(t) = {O: s;(O_;t) > 01s_'(Oj;t) < 0}

d _ d d +
_sj = _si = _si

Choose uj(O, t) so that outside 8j we have

d

(4.83)

(4.84)

d +

_.s+ <

The boundary layer is the attraction for points in hyperspace which is assured

by the above conditions. Any continuous interpolations between uj for s- and

uj for s + will suffice. If

d

sj =(_+ Ai)n,-l(e_--O,Ai),A j > 0 (4.87)

0 VO • s'f(t) (4.85)

0 ve • sf(t) (4.86)



then with e,(0) = edj(0)

le,- e,dJ< _ivt> o

84

If ej(0) _ e_(0), we have

IO, - e,_l < _j + p(t) Xl6,(0) IIexp(-_t)

(4.88)

where P(t) is a polynomial in t.

Consider l he single-input single-output system of the form

X2 = X3

(4.89)

_,_ = f(=) + 9(z)u + d (4.90)

where the states arq. z = [zl x2 ... x,] r, u is the control, y is the output and d

the disturbance. The tracking problem is to make output approach the desired

output while allowing for uncertainties in f and 9. The time varying sliding

surface s is defined as

(4.91)
d

8(x;t) = (_+_)"-_, _>o

where e = y_ - y and A is constant scalar. The trajectories are attracted to

the sliding surface and this results in nullifying the error. The phase plane

trajectory should converge to the sliding surface in order for the control law to

be effective in fulfilling the desired tracking objective. Chattering is removed

by smoothing out the control surface discontinuity in a thin boundary layer

neighbouring the switching surface which is given by

B(t) = {=: 18(=;t)l_ ,X"-_e} (4.92)
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where the thickness of the boundary layer e > 0. Consider the modelling error

y = / + 6f (4.93)

Assume that

16fl <_ F (4.94)

Idl < D (4.95)

where ], F and D are known functions of time and states. Let

k(z;t) = h(z,t)+d(z,t)+v(t)+q >Tl >O (4.96)
n--I

u = -]- y_ C_-'It'_"-'-k(x;t)sgn(z) (4.97)
tr_l

Introduce a boundary layer of thickness e, and thereby modifying the control

to

n-|

s (4.98), = -]- s,,t(W:.q_,)

where sat is the saturator and this control does satisfy the sliding condition

Eqs.(4.54). For points satisfying_(0) - 0,

S

= k(z;t)_-._-___t + (_ff(x,t) + d(t) - z_ ")) (4.99)

$

= k(x,; t)_--_7-___t+ (6f(zd, t) + d(t) - z(_"} + O(e)) (4.100)

for 6f and k are continuous functions.

The sliding condition that needs to be satisfied for convergence is

ld 2
) < -,71.,I (4.101)

for a non-negative ,.onstant7. This condition islikea Lyapunov function. It

shows that the distance squared from the slidingsurface(s2 term), gets smaller

as the trajectoriesare traversedtoward the slidingsurface.The slidingsurface
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also allows for disturbances and uncertainties like parameter variations and

the sliding conditiol, takes care of the perturbation caused. Control laws which

satisfy the sliding ,:ondition are discontinuous across the sliding surface and

lead to control chattering. This is due to the absence of the exact knowledge of

the value of the sliding variable. This leads to jumps across the sliding surface

at high frequency. '['his is the phenomenon behind high frequency chattering.

Chattering can excite higher order modes. Thus it lowers the robustness to

unmodelled dynamics which are the higher modes. Hence it would be desirable

to smoothen the control and eliminate chattering.

In case of g(z) = b (scalar constant), let b vary in the interval given

by

0 < b,,,., < b < b,_,_= (4.102)

This bounded interval margin is assumed to contain the parameter

variations of parameter b. This should take care of robustness to parameter

variations in b, the control gain constant that appears in the equations of mo-

tion of the system. This interval margin is bounded and represents a function

of masses and spring stiffness in the case of flexible structures. Hence the vari-

ations in b are caused by variations of real parameter variations like masses

and spring stiffness which are uncertain parameters. The control gain b ap-

pears as a product in the equations of motion and this results in multiplicative

uncertainty. Define

-- (b,,,,,b,,_=)½ (4.103)

/3 - (b,,,,,/b,,_ffi)½ (4.104)

is the analogue of gain margin in linear control and b is the geometric mean
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of extremeboundsof b. The perfection in tracking is achieved by

A"e = _km,,, (4.105)

In the case of time varying boundary layer the control is chosen to satisfy

ld 2
_Ms <_-,lsl + _"-'_lst + ),"-'Ii_I(Z - 1) (4.106)

The corresponding dynamics of boundary layer thickness are

k(z_; t) >__,x"_/_ =:, i + ,xt = ,__, k(x_;t) (4.107)

At 1

k(xd;t) < Aae/_ _ _+ l_-_ = B-_yk(xd;t) (4.108)

,(o)= _k(=,(o),o) (4.109)

k(x;t) = [k(z;t)-k(zd;t)]+A"e(t)/_ (4.110)

The control law is given by

u = b-t[fi-ksgn(s)] (4.111)

The sliding condition is satisfied and this represents the analogue of the switch-

ing function of variable structure control. The control law takes into account

parameter variations in b. Chattering is greater and it would be desirable to

smoothen the control action. This smoothening should keep useful properties

of robustness to parameter variations, robustness performance and good track-

ing properties of sliding mode control. Slotine and Sastry [22] have developed

a boundary layer to eliminate chattering. Redefining the boundary layer ¢ as

_(t) = k"-'(t)t(t) (4.112)

modifies the control to the following form

rt,--I

,, = -]- _ c;'-',x,-'(,x=_"-,_+ p;x=--,'-')

-_:(z; t) sat(s) (4.113)
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The boundary layer is spacesurrounding the sliding surface in an envelope

in the hyperspace. This contains the discontinuity jumps which take pla_e

and could be thought of as an analogue of a dead zone. The undesirable

chattering is eliminated. The action of boundary layer is similar to that of

a low pass filter near the sliding surface to variable s. A trade off between

tracking and robustness to parameter variations results. The tuning parameter

is the thickness of the boundary layer. A time-varying boundary layer is utilized

to allow for variations of boundary layer with time. In the case of time varying

boundary layer, the dynamics are given by

kf;rdl) _ A_/J,t =#, _ + Ji_ = Jdk(;r_) (4.114)

kfz,t) _ AdJlJ, t =i_ _ + AtJlJ_ = k(z_)lJd (4.11,5)

where

1:- k(=) - k(xd)+

and zd is the desired target state x. "['he initial condition is

(4.116)

= (4.117)

4.4 Model of an Uncertain Flexible Structure

Consider lhe two mass-spring system shown in Fig. 3.3 which is a

generic model of an uncertain dynamical system with one rigidbody mode and

one vibrationmode [26]. The equation of motions can be written as :

,]il

_4

0 0 1 0

0 0 0 1

-k/m, /¢/mi 0 0

k/ms -k/ms 0 0

!t -" X.s

ZS

X4

0

0

+ llrnl

0

u (4.118)

(4.119)
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where Zl and z2 are the positions of body 1 and body 2, respectively; z3 and

x4 are the velocity of body 1 and body 2 respectively. The aim is to design a

feedback controller for a unit step output command tracking problem for the

controlled output x_ with the following specifications :

1. Control input is limited as lul < 1.

2. Performance requirements : settling time and overshoot are both to be min-

imized.

3. Performance rob,lstness and stability robustness with respect to the uncer-

tain parameters rnj. rn2 and k ( with nominal values of ml = rn2 = k = 1) are

to be maximized.

The equat ions of motion can be written in modal coordinates as :

Yl = ¢1u (4.120)

_ +w2y_ = ¢_u (4.121)

where _ is the natural frequency of the vibration mode and _1 , ¢_2 are the gain

constants.

4.5 Sliding Mode Controller Design

The initial conditions for the rest-to-rest maneuver is

and the final condil ions

yl(0) = y2(0) = 0 (4.122)

_/_(0) = _/2(0) = 0 (4.123)

yld ffi 1,y2,f ffi 0 (4.124)

_ = 0,_2_ = 0 (4.125)
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The sliding surfac," is to be defined in terms of sliding variable s. Let

where 9 = Y -Yd.

(4.126)

The parameter A is the weight used in the error function

and it also acts as the poles of the filter in the dynamics of the sliding variable.

Thus the problem is reduced to a tracking problem to satisfy the rest-to-rest

maneuver. By approaching the sliding surface in the phase space would be the

strategy of the coal roller for achieving perfect tracking. Differentiating s, we

get

.;' = u(_bl + A¢2) - Aafly2 --,V,d -- A_2_ (4.127)

where ff_ is the desired target acceleration.

where

The contr,)l logic u is of the form

.= a{a- k_g.(_)} (4.128)

(4.129)

(4.130)

This is introduced

. = (_ + _)-'

and the &, ¢I, _2 are the worst case parameter variations.

to make the control robust to parameter variations in masses ml and m2 and

spring stiffness k.

To satisfy the sliding mode condition

s_ _<-_1_1 (4.131)

the following condil ion need to hold

k> a [-,p+ IA_y2+STaa+A_2dl]+la_Y.;y2l+lA(ga.,+:_92d)1(4.132)
_l + A_2
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This setsthe lower boundon the valueof K to be chosen. Now the boundary

layer ¢ is included to modify the control law to

,..,= -

To satisfy the bounded control specification we saturate it as

(4.133)

u _ sat(u) (4.134)

Carrying out the simulations the results for the above example yields a sluggish

response. The response has considerable fluctuations and would result in large

settling time larger than 10 seconds. It shows some chattering activity initially

which is undesirabl,.. By using

s = _, + AY2 (4.135)

and using the same control law obtained before we obtain the better response

shown in Fig. 3.4. This design has settling time of about 8 seconds and is

simulated for the exact nominal case of parameters. It has a small overshoot

and it has no chattering or any residual vibrations. The control time history

also shows the switching of control to both extremes and also the linear varia-

tions combinations. The rise time is fast and these are the desirable properties

required for a conlrol design.

This control design should be robust to parameter variations. Now

the parameter variations are introduced and the simulation results are shown

for various values of parameter variations in the Fig. 3.5-3.8. This illustrates

the robustness to parameter variation and stability robustness. The ability of

the controller to switch and provide the necessary control action is seen clearly

iKl these simulatiou._. Further the variations in the control actions to different

cases of parameter variations are seen. This is in contrast to the robustified
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time optimal solutionswhere one control time history had to be used for any

case of parameter variations.

4.6 Conclusion and Issues

An observor can be designed for estimating one of the states the

position of the firstmass. However the methodology used in the design of the

slidingmode controlleristo convert to modal coordinates. The transformation

from real coordinates to modal coordinates needs the knowledge of both the

states.The slidingmode controllerisa nonlinear scheme which also provides

robustness to paraaneter variationsand robust performance. Its introduction

to a generic case of uncertain flexiblestructureshas been shown to provide a

good performance.
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Figure 4.1: Sliding Mode Region.
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Figure 4.2: Sliding surface.
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Chapter 5

Conclusion

The robust time-optimal open-loop control problem of flexible space-

craft in the face of modeling uncertainty has been investigated. The primary

study objective wa._ to explore the feasibility of computing open-loop, on-off

pulse control logic for uncertain flexible spacecraft. The results indicate that

the proposed approach significantly reduces the residual structural vibrations

caused by modeling uncertainty. The results also indicate the importance of a

proper jet placeme_,t for practical trade-offs among the maneuvering time, fuel

consumption, and performance robustness. It is shown that most problems re-

quire an accurate mathematical model and thus are sensitive model parameter

variations. A nonlirJear constrained parameter optimization method is used for

solving this problela. The structural flexibility and mass distribution of the

vehicle is uncertain while the total mass is well known. So the uncertainty

occurs in modal frf.quency and mode shapes. The case of one sided control

inputs only satisfi_._, the necessary conditions and theorems on uniqueness and

structure of controls do not exist at this time. The time-optimal responses are

shown to be quite s,.nsitive to variations in model parameters. The response of

displacement of masses due to variation of spring stiffness is illustrated. Sim-

ilar responses can ",also be observed for arbitrarily combined variations of k,

and rn, but keeping total mass constant. The two one-sided control inputs

solutions are bang-off-bang nature and in this case the control on-time is not

equal to the maneuver time as was the case in bang-bang control. This shows
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saving in fuel consumption even though the objective function does not have

any weighted fuel terms. The robustness constraints are incorporated and the

parameter optimization problem is solved with these constraints. The number

of pulses are increased to match the additional number of constraints. The

resultsindicate that the robust time-optimal solution are lesssensitiveto pa-

rameter variations. The performance robustness increasesat the expense of

increased maneuver time. By prolonging maneuver time does not reduce resid-

ual vibrations causrd by model uncertainty but a properly coordinated pulse

sequences, the flexiblemodes are not significantlyexcited during maneuver and

are well desensitize.d.The summary in chapter 2 shows that case 2-3 was the

best actuator location in terms of overallperformance. The accuracy of the

switching time isalso presented and itisshown that the robust time-optimal

solution isinsensitiveto parameter variationsfor switching time accuracy upto

two places of decimal. The problem of solving the optimal actuator location

using m thrusters in an n mass spring configurationis stillan open research

problem.

The robust fuel-and time-optimal controlof uncertain flexiblespace-

crafthave also beerJinvestigated.The consumed fuelwas assumed to be small

compared to the mass of the spacecraftand itwas assumed to be proportional

to the jet on-time. The performance index is a weighted function of the ma-

neuver time and jel on-time. The bang-off-bang nature of the two one sided

control provides a considerable reduction of jet on-time. It is again noticed

in the fuel-and time-optimal controlsolution that the totalmaneuver time in

not the same as the jet on-time. The rigidbody solution isshown to have sig-

nificantresidualvibration and hence itisnecessary to include flexiblemodes.

The robust fuel-and time-optimal control again shows increasedmaneuvering

time at the expense of robustness. Itwas shown that by obtaining a rigidbody
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solution with comp_trable final time with the robust fuel- and time-optimal so-

lution of flexible structure, the residual vibrations are siginificant larger in the

rigid body solution,_.

The sliding mode control design using bounded control inputs was

obtained for the benchmark problem. The results indicate robust performance

to parameter variations. The feedback design uses a saturator to bound the

control inputs. The stability of such controller was not studied and it remains

an open issue. This scheme is not minimizing the maneuvering time or the fuel

consumption. The fast settling time and low overshoot are the characterstics

shown by this design.

There are some limitations of the present work. The analysis is re-

stricted to linear, elsstic and undamped systems. The future research directions

should be towards 1he ultimate goal to develop nonlinear feedback control for

achieving the robust fuel- and time-optimal performance. The experimental

verification of the applicability of the robust fuel- and time-optimal control

should provide more insight in its practical implementation. The mathemati-

cal rigorous conditions are also needed for necessary and sufficient conditions

of time-optimal control in the case of two one-sided controls.
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APPENDIX A

Numerical Solution of Nonlinear Constrained Optimization Problem



Appendix A

Numerical Solution of Nonlinear Constrained

Optimization Problem

The constrained parameter optimization problem can be solved using

numerical schemes[18]-[21].The problem can be stated as

min f(z), z E R"

gj(x)=0, j = 1,...,me

g.,(z) H0, j = m_+l,...,m

zl__ z <z,,

(A.1)

where xt and x,, are the lower and upper bounds of x respectively. It is also

assumed that the fimctions are all continuously differentiable.

Let the current iterate be xk and vj, be the corresponding approxima-

tion of optimal Lagrangian multiplier. The positive definite approximation of

the Hessian, Bk, of the Lagrangixa function

lrltl a

L(x,.)= f(x)- _ -jg_(_)
j----I

where u = (ul, .... a_,) r E R "¢.

of z be defined as

(A.2)

Let the value m' = rn + 2n. Let the bounds

= xt/-"l-x} j-"), j=m+l,...,rn+n

_t/-_-'_) _ xO-m-'O, j - rn + n + I,. m' (A.3)
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Linearizing the constraints of the optimization and minimizing quadratic ap-

proximation of the Lagrangian function as

rain 2 dr Bkd

Vgi(zk)rd + 9i(zk)

V.qi(zk)rd + gj(z_)

ZI -- .gk < d < gu -- _gk

+ Vf(zk)rd

= O,j = 1,...,m,,

> O,j=m,+l,...,rn,

(A.4)

Let dj, be the solution and uk be the corresponding vector of the Lagrangian

multiplier.

Xk+l -" Xk "t" akdk (A.5)

where as is the line _earch parameter such that it decreases the 'merit function'.

However Eq. (A.4) may lead into a non-feasible problem but it may still be

feasible due to linearization of the constraints. Also it needs the gradients

of the constraints at eada iteration. To avoid these problems Schittkowski

proposes an augmented Lagrangian method using the an additional variable _,

min 2 drB_d + f(zk)rd+ 2p_6 2

Vg,(z,)rd + (1 -6)gi(=,) _>O,j e Jk

_'g_(zk(j})rd + gj(z_) > O,j E Kk

xt _ x<x_

(A.6)

where

= {1,...,m,} U

{J: _, < J -<_, gi(=,) -<_o_oJ_)> o},

= {1,...,m}/J_

(A.7)

(A.8)
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where e is the accuracy required and pk is the additonal parameter used to

reduce the influence, of _5on the solution. The matrix Bk update can be used

from the BFGS update formula given by

qkq[ Bkpkp_B_

Bk+l = BI, + _ prBkpk

Pk -- Xk+l --X_

(A.9)

qk = Vf(zk+i) r- Vf(z_) r

The constraints are non-linear and the cost function is linear. The

standard IMSL subroutine NCONF uses successive quadratic programming

method to solve a general nonlinear programming problem. It requires the

value of the constraints and their gradients at each iteration. This scheme

uses an initial gu_s value and then iterates to converge to the solution. There

are many local optimum solutions which are obtained by using different initial

guesses. However the optimum solution is one which has optimal cost function

amongst the local optimum solutions.




